2020年度 授業シラバスの詳細内容

〇基本情報					
科目名(英)	機械力学2(Dynamics of Machinery 2)				
ナンバリングコード	J20502	大分類 / 難易度 科目分野	機械電気工学科 専門科目 / 標準レベル 機械力学		
単位数	2	配当学年/開講期	2 年 / 後期		
必修•選択区分	選択				
授業コード	J050251	クラス名	-		
担当教員名	原田 敦史、高山 勲				
履修上の注意、 履修条件	〇本講義は、微分積分1と2,材料力学1と2、機械力学1の知識が必要になるため、予習プリント等により適宜復習を行う、必ずこのプリントを解き、復習を行うこと、 〇レポートは遅れるごとに減点するため期限を守ること、また、模範解答はHPに掲載するため、復習等に利用し、問題用紙も掲載するため、欠席等した場合はダウンロードすること、 〇授業開始10分から45分までに参加した場合は遅刻とし、それ以降は欠席とする。				
教科書	プリントを配布する				
参考文献及び指定図 書	機械力学(朝倉書点) モード解析入門(コロナ社) 基礎演習 機械振動学(数理工学社)				
関連科目	機械力学1、材料力学				

〇授業の目的・概要等					
授業の目的	機械電気工学科のディプロマ・ポリシー「機械・電気技術の産業界での役割を考え、身につけた技術や知識を上手く活用し、社会の諸問題に対して主体的に取り組み、常に自発的に学び続ける意欲を持つことができる。」に基づき、専門分野の基礎理論の一つである振動工学の知識を身に付ける.振動と呼ばれる現象は、携帯電話のバイブレーション機能やクオーツ時計の水晶振動など活用している工業製品がある一方で、自動車や船などの乗り物の揺れや地震など悪い場合などもある。これらの現象は、減衰のない自由振動、減衰のある自由振動、外部から力が加わる強制振動の問題をモデル化し、運動方程式を立て、固有振動数などを計算することを目標とする。これらを学習することにより、機械製品で利用される振動現象や、運動中に現れる振動の問題を説明する能力を修得し、これらの現象をモデル化し、計算する能力を身につける。				
授業の概要	以下の項目に関する講義を行う。 ①振動を学ぶ上での基礎 [工学の基礎, 力学の基礎, 振動工学の基礎] ②減衰の無い自由振動, ③減衰のある自由振動, ④減衰のない強制振動, ⑤減衰のある強制振動 [②~⑤に関しては, 振動の特徴, 運動方程式の立て方, 運動方程式の解などを解説する.] ⑧振動の応用例:振動の防止策などを説明する				
	(1)授業の形式	「講義形式」			
授業の運営方法	(2)複数担当の場合の方式	「オムニバス方式」			
	(3)アクティブ・ラーニング	該当なし			
地域志向科目	該当しない				
実務経験のある教員による授業科目	該当しない				

〇成績評価の指標	〇成績評価基準(合計100点)			
到達目標の観点	到達目標	テスト (期末試験・中 間確認等)	提出物 (レポート・作 品等)	無形成果 (発表・その 他)
【関心・意欲・態度】				
【知識・理解】	工学現象に関する機械力学の問題を理解できる 振動問題をモデル化できる 振動の防止策を振動工学の知識を用いて理解できる	30点	40点	
【技能・表現・ コミュニケーション】	振動現象をモデル化することができる 振動力学における重要な変数を計算する技能を有している	20点	10点	
【思考·判断·創造】				

O成績評価の補足(具体的な評価方法および期末試験・レボート等の学習成果・課題のフィードバック方法) 達成水準の目安は以下の通りです。

「Sレベル」単位を修得する為に達成すべき到達目標を満たしている。

「Aレベル」単位を修得する為に達成すべき到達目標を満たしている。

「Bレベル」単位を修得する為に達成すべき到達目標を満たしている。

「Cレベル」単位を修得する為に達成すべき到達目標を満たしている。

|授業の中で、適宣質問をします。自分の見解をもって答えた学生は、記録して加点することがあります。

- 講義内容に関する質問はオフィスアワーの時間を利用して相談すること.
- 授業の資料を掲載するホームページのアドレスを授業1回目に紹介するので活用すること.
- レポートの模範解答はホームページに掲載するため、各自確認すること.
- 小テストの試験範囲はレポートの範囲から出題するため, レポートを必ず解くこと.
- 中間確認試験に関しては、正答率が悪かった問題は講義内で解説します。また、中間確認試験と定期試験の模範解答と 解説は教員室前ファイルに掲載するため、活用すること。

2020年度 授業シラバスの詳細内容

〇授業計画	科 目 名:機械力学2(Dynamics of Machinery 2) 担当教員:原田 敦史、高山 勲	授業コード: J050251	〇授業計画	科 目 名:機械力学2(Dynamics of Machinery 2) 担当教員:原田 敦史、高山 勲	授業コード:J050251
学修内容			学修内容		
1. 概要説明及で 授業の進め方及で 振動を学ぶ上で重			9. 減衰系の自由 臨界減衰の場合の物 減衰を伴う振動の一	特殊解の求め方を学ぶ	
	を確認し、関連科目の復習をすること Dプリントを配布する	(約2.0h) (約2.0h))講義の中で予習すべき項目を連絡する のプリントを配布する	(約2.0h) (約2.0h)
2. 基礎学習	動を学ぶ上で重要な力学の基礎及び必要な数学について復習する	(#32.317)	10. 減衰系の自由		(4)32.011/
	講義の中で予習すべき項目を連絡する Dプリントを配布する	(約2.0h) (約2.0h)		講義の中で予習すべき項目を連絡する アプリントを配布する	(約2.0h) (約2.0h)
3. 減衰の無い 簡易的なモデルから	日由振動[1] 運動方程式を求める方法を学び、この方程式の一般解を説明する		11. 周期的外力に 減衰のない系の強制	こよる自由振動[1] 制振動系の解の求め方を解説した後、初期条件から特殊解を求める	
復習 : 復習用(講義の中で予習すべき項目を連絡する Dプリントを配布する	(約2.0h) (約2.0h)	復習 : 復習用の	の講義の中で予習すべき項目を連絡する のプリントを配布する	(約2.0h) (約2.0h)
4. 減衰の無い 自 減衰の無い自由振	 由振動[2] 助系において,初期条件から特殊解を求める			こよる自由振動[2] 制振動に関して,解の求め方を解説した後,初期条件から特殊解を:	求めます
	講義の中で予習すべき項目を連絡する Dプリントを配布する	(約2.0h) (約2.0h)		の講義の中で予習すべき項目を連絡する のプリントを配布する	(約2.0h) (約2.0h)
5. 減衰の無い自			13. 周期的外力に	こよる自由振動[3] 示す周波数応答関数について説明します	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	講義の中で予習すべき項目を連絡する Dプリントを配布する	(約2.0h) (約2.0h)		の講義の中で予習すべき項目を連絡する のプリントを配布する	(約2.0h) (約2.0h)
6. 減衰系の自 日 モデルから運動方程	日振動[1] 星式を立て,一般解を説明した後,過減衰の場合の振動特性および一	般解の求める	14. 振動の防止[振動絶縁と基礎絶糸	1] 縁に関して説明を行う	
	講義の中で予習すべき項目を連絡する Dプリントを配布する	(約2.0h) (約2.0h)		防止に関して事前に調べること のプリントを配布する	(約2.0h) (約2.0h)
7. 中間確認試 1~6回目の講義の	b	(赤yz.UII)	15. 振動の防止[/ 動吸振器に関して診	2]	(市 ງ 2.0H)
	忍試験に向けて各自, 勉学に励むこと 答を確認し, 解けなかった問題等を復習すること	(約2.0h) (約2.0h)		防止に関して事前に調べること のプリントを配布する	(約2.0h) (約2.0h)
8. 減衰系の自由 中間確認試験の解 過減衰の場合の特	日振動[2]		16. 期末試験 1~15回目の講義内	P容の試験を行う。	
	講義の中で予習すべき項目を連絡する 答を確認し, 試験の復習をすること	(約2.0h) (約2.0h)		験に向けて各自, 勉学に励むこと 答を確認し, 試験の復習をすること	